翻訳と辞書 |
Order-7 tetrahedral honeycomb : ウィキペディア英語版 | Order-7 tetrahedral honeycomb 40px |- |bgcolor=#e7dcc3|Faces|| |- |bgcolor=#e7dcc3|Edge figure|| |- |bgcolor=#e7dcc3|Vertex figure|| 100px |- |bgcolor=#e7dcc3|Dual|| |- |bgcolor=#e7dcc3|Coxeter group||() |- |bgcolor=#e7dcc3|Properties||Regular |} In the geometry of hyperbolic 3-space, the order-7 tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol . It has seven tetrahedra around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many tetrahedra existing around each vertex in an order-7 triangular tiling vertex arrangement. == Related polytopes and honeycombs ==
It a part of a sequence of regular polychora and honeycombs with tetrahedral cells.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Order-7 tetrahedral honeycomb」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|